Noise-Resilient Quantum Machine Learning for Stability Assessment of Power Systems

Demonstration of qTSA procedure on the SMIB test system.

Abstract

Transient stability assessment (TSA) is a cornerstone for resilient operations of today’s interconnected power grids. This paper is a confluence of quantum computing, data science and machine learning to potentially address the power system TSA challenge. We devise a quantum TSA (qTSA) method to enable scalable and efficient data-driven transient stability prediction for bulk power systems, which is the first attempt to tackle the TSA issue with quantum computing. Our contributions are three-fold: 1) A low-depth, high expressibility quantum neural network for accurate and noise-resilient TSA; 2) A quantum natural gradient descent algorithm for efficient qTSA training; 3) A systematical analysis on qTSA’s performance under various quantum factors. qTSA underpins a foundation of quantum-enabled and data-driven power grid stability analytics. It renders the intractable TSA straightforward and effortless in the Hilbert space, and therefore provides stability information for power system operations. Extensive experiments on quantum simulators and real quantum computers verify the accuracy, noise-resilience, scalability and universality of qTSA.

Publication
Submitted to IEEE Transactions on Power Systems

Related